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Abstract 

Although not an extremophile, Deinococcus radiodurans has proven to have 

exceptional resistance to ionizing radiation, specifically via gamma and X-ray photons. To 

date, no known experiments have bombarded the bacterium with charged particles larger 

than hydrogen. This study explored the effects on the organism’s ability to survive high 

linear energy transfer heavy-charged particle exposures of oxygen ions. It also investigated 

the effects of low linear energy transfer ultraviolet radiation on various mutants. 

Two uvrB mutants were created to ascertain the importance of the gene in single-

strand break repair following gamma irradiation and two recF mutants were created to 

explore the role of the gene in double-strand break repair. The samples were desiccated to 

decrease the probability of indirect DNA damage. Following exposure the samples were 

rehydrated and counted. Comparisons were made against control samples and statistical 

differences were evaluated through a two population t-statistic test.  The uvrB mutants 

displayed greater lethality than the wild type control and other mutants to gamma exposure 

and the recF mutants clearly experienced growth latency and greater lethality following 

oxygen ion exposure. 
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CHARACTERIZATION OF THE EFFECTS OF HEAVY CHARGED PARTICLE 

EXPOSURE ON THE RADIATION RESISTANT BACTERIUM DEINOCOCCUS 

RADIODURANS 

 

I.  Introduction 

General Issue 

  In the last 70 years the prospect of encountering high levels of ionizing radiation as 

a result of a nuclear event, radioactive particle release, space exploration, or nuclear-related 

medical treatments has garnered great attention across a wide array of professional 

communities. The United States Department of Defense (DoD) continues to investigate 

novel methods, techniques, and materials that may increase survivability of personnel. The 

Defense Threat Reduction Agency (DTRA) is currently funding studies for Basic Research 

for Combating Weapons of Mass Destruction (HDTRA-11-12-BRCWMD-BAA). DTRA 

specifically identifies “biological systems, including intact structures, metabolic products, 

or discrete components and pathways, as applied to protection of U.S. Forces during 

operations in areas actually or potentially contaminated by radiation. [1]” The expressed 

aim of this research is to investigate biological resistance mechanisms to radiation damage 

in the hope to one day contribute to personnel survivability in radiation environments. This 

fundamental research can concurrently benefit the health community by contributing to 

improved treatment options or even preventative care. In an attempt to better understand 

the mechanisms of radiation resistance, this project will examine various mutants of 

Deinococcus radiodurans (D. radiodurans) following exposure to heavy-charged particles 

to determine their survivability. 
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 Although not an extremophile, D. radiodurans has long been acknowledged to have 

exceptional resistance to ionizing radiation, specifically gamma and X-ray bombardment. 

D. radiodurans’ resistance is 200 times and 20 times that observed in Escherichia coli (E. 

coli), respectively [2]. The goal of this research is to identify DNA repair genes that enable 

D. radiodurans to survive large amounts of DNA damage through radiation (direct 

damage), oxidation (indirect damage) and desiccation [3]. Investigations will be made into 

cell survivability through exposure to a high flux of high linear energy transfer (LET) 

heavy charged particles (HCP). If primary DNA repair genes are identified, the 

applications within the DoD and health communities may be a profound improvement in 

the ability to protect humans from biological radiation damage. 

 

Problem Statement 

 D. radiodurans has proven to be exceptionally resistant to gamma induced low-LET 

ionizing radiation and high-LET proton and neutron radiation [4] but there is no data on D. 

radiodurans resistance to high-LET heavy charged particle radiation.  

Research Objectives 

This research will attempt to accomplish three objectives. The first is to characterize 

wild-type D. radiodurans growth following a high-LET HCP exposure. The second is to 

characterize D. radiodurans mutant growth following the same exposure. The third 

objective is to identify additional genes that may contribute to wild-type D. radiodurans 

radiation resistance. 
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Hypothesis 

 The first hypothesis is that D. radiodurans exposed to high-LET HCP will exhibit a 

statistical difference from the untreated wild type control group. The second hypothesis is 

that mutants exposed to high-LET HCP will exhibit a statistical difference from their own 

untreated control group. The third hypothesis is that exposed DNA repair mutants will 

exhibit a statistically significant difference when compared to the exposed wild type. The 

null hypothesis is as follows:  The populations of the experimental group (HCP radiated) 

and control group (no radiation) will show no statistical difference. 

 

II. Literature Review 

Chapter Overview 

This chapter provides a brief description of D. radiodurans. It provides an overview 

of the structure of DNA, DNA repair, and D. radiodurans’ unique DNA make-up. It 

discusses the major differences between high and low LET as well as the importance of 

choosing the right energy for this research. It also provides a brief discussion on heavy 

charged particle interactions with matter. This chapter concludes by identifying the theory 

and methods surrounding gene knockouts and mutant strain development 

A Brief Description of Deinococcus radiodurans 

  D. radiodurans, a common bacteria found worldwide, was first noted as being 

highly radiation-resistant in the mid-1950s when it was found to remain as a contaminant 

after radioactive sterilization of tin cans during industrial canning. While the organism is 

benign to humans, its presence in the cans caused food to spoil. The industry used 4000 Gy 
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(Joules/kg) of gamma radiation assuming this dose was more than sufficient to kill any 

living organisms and completely sterilize the surfaces of the tin cans. There was little 

research interest in D. radiodurans from the 1950s until the early 2000s, when the scientific 

community began efforts to understand the processes contributing to D. radiodurans’ 

extraordinary hardiness. These efforts were largely possible due to the rapidly increasing 

computing power enabling full sequencing of D. radiodurans’ genomic construct. The 

body of work surrounding D. radiodurans investigations has grown considerably within 

the past decade. It has been moderately well-characterized while in a hydrated state, but up 

until 2016 [4] there had been no reports of it exposed to radiation while desiccated, nor had 

it been exposed to moderate doses of neutrons. To-date, no experimental investigations of 

desiccated D. radiodurans exposed to high energy charged particles heavier than hydrogen 

nuclei have been identified in the literature.  

 Scientists have proposed a number of possible mechanisms that contribute to the cell’s 

ability to survive irradiation as well as desiccation. One theory suggests that a condensed 

genomic copy of its DNA contributes to its ability to reconstitute whole, complete, and 

error-free chromosomes following damage. [6] Another infers the bacterium has a unique 

ability to evade protein oxidation. [7] Cox et al. suggest that although these hypotheses 

may be correct to some degree, the primary mechanism for survival is D. radiodurans’ 

exceptional ability to sustain and subsequently repair massive amounts of DNA damage. 

Consequently, this is likely the primary mechanism for its ability to also survive extreme 

desiccation. [8] 
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DNA 

  Deoxyribonucleic acid, typically referred to as DNA, contains all of an organism’s 

genetic information. It is composed of a nitrogen-containing base, a pentose sugar, and a 

phosphate group. There are four primary nitrogen-containing base groups consisting of the 

purines, adenine and guanine, and the pyrimidines, cytosine and thymine. Each purine is 

hydrogen bonded to a pyrimidine into a base pair. [9] The sequence of these base pairs 

governs the production of all proteins within the cell. These proteins can then go on to 

perform their necessary functions. 

  Base pairs are formed in a tightly bound helix so the entire structure takes on the 

appearance of a spiral staircase. The outside of the “staircase” is composed of alternating 

covalently-bonded sugar and phosphate groups while the “rungs” between them are 

hydrogen-bonded purine-pyrimidine base pairs. The bonding of the purines and 

pyrimidines always follows a specific pattern; adenine bonds with thymine while cytosine 

bonds with guanine.  

  D. radiodurans’ DNA consists of two large chromosomal segments and two 

smaller plasmid segments. [10] The cell, when viewed under a microscope, appears as a 

tetrad. In practical terms, this means that there are at least two copies, and possibly more 

depending on the growth state of the bacteria, of the full genomic sequence contained 

within every cell. This almost certainly contributes to its remarkable ability to repair DNA 

damage.  
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Figure 1. Composition of Deinococcus radiodurans nucleus. SEM image taken at USAFSAM in 2016. 

[4] 

DNA Damage from Direct and Indirect Actions 

  When biological organisms or tissues are exposed to even moderate doses of 

radiation they inevitably sustain damage. Due to the relative volume of the organism in 

comparison to the volume in which the DNA is contained, the majority of the damage is 

incurred by the cell membranes, proteins, and other cell structures. However, with a high 

flux of ionizing particles one can expect that a portion of the damage will accrue in the 

DNA of the cells and can be statistically or experimentally determined. The damage is 
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categorized as either direct or indirect damage. While their mechanisms are different they 

both contribute to the total DNA damage experienced by a cell in a hydrated state.  

  As previously noted, an incident charged particle imparts most of its energy to the 

target medium at the end of its path length. If that happens to be in very close proximity to 

DNA, the Coulombic interactions of the now-stationary charged particle can tear apart 

multiple hydrogen and covalent bonds in its vicinity. The amount of ionizations created by 

this particle are log-linear in proportion to their molecular weight, meaning that larger 

particles create more ionizations at the end of their track than smaller particles. [12] This 

is more likely to result in double-stranded DNA breaks (DSB), which in many cases are 

lethal to a cell. Large sums of double-stranded breaks are almost universally lethal except 

in a very few cases, one of which is D. radiodurans. 

  When ionizing particles interact with the water contained within the cells reactive 

oxygen radicals are formed. According to Alpen, “the primary products are the excited 

water molecule, H2O*, and its immediate dissociation products, H· and OH·, and from the 

direct ionization of H2O, H2O+ and e- are produced.” [12] If these reactive oxygen species 

(ROS) are formed in proximity to DNA, they can break bonds within the DNA backbone 

causing a single-strand break (SSB). This is referred to as indirect damage since the 

incident particle did not itself interact with the DNA but rather a secondary ionized product. 

Cells can typically repair a single-strand break without errors since the complement in the 

base pair is still present. A cell can be overwhelmed by single-strand breaks if they occur 

on opposite sides of the helix within about a 10 base pair region. The tension on the helix 

can break the hydrogen bonds resulting in an induced double-strand break. If the cell 
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experiences too many single strand and induced double-strand breaks it will certainly be 

more error prone and ultimately may not be capable of recovering.  

General DNA Repair Mechanisms 

 DNA damage is inevitable throughout the lifespan of a cell. Indirect damage can 

occur through natural means such as from the interactions of reactive oxygen species that 

are produced by the cells as a result of normal metabolic processes. Direct and indirect 

damage can also occur through the interaction of foreign objects such as atomic particles 

or photons with atoms comprising the various components of the cell. There are five 

general repair pathways that are employed by the cell to maintain the integrity of the 

genomic information. Those pathways consist of base excision repair, mismatch repair, 

double strand break repair, nucleotide excision repair, and photoreactivation (or damage 

reversal.) [17] 

 Base excision repair is implemented when a single base experiences damage and 

either results in a base mismatch or a distortion (dimer) of the backbone. [18] As stated, 

indirect damage in the lifecycle is inevitable and can be a result of “simple chemical 

processes such as oxidation, hydrolysis, and methylation.” [17] The damage, usually in the 

form of deamination, oxidation, or alkylation, is first recognized by an enzyme called 

glycosylase. Another enzyme called endonuclease cleaves the DNA on either side of the 

site and removes the damaged portion. Polymerase synthesizes replacement bases using 

the single-stranded portion on the opposing side of the helix as a template. The process is 

completed when the nicks are sealed by ligase. [18] 
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 Mismatch repair is essentially a DNA audit for incorrect insertions, deletions, or 

mis-incorporation of bases during the replication process. The proof-reading process is 

strand-specific and is likely signaled to begin comparisons of the parent and daughter 

strands by unsealed ends of the backbone after replication. Once an error has been detected, 

the method for repair is similar to either base excision or nucleotide excision. [17] 

 When the hydrogen bond between the bases is broken, as may occur after 

interaction with a photoproduct, two adjacent bases can then bond with each other creating 

a bulge in the backbone. The nucleotide excision repair mechanism involves unwinding a 

portion in both the 3’ and 5’ directions. The section is then cleaved and removed by 

endonuclease. DNA polymerase uses the complementary bases as a template to repair the 

excised portion and the ends are sealed by ligase, much in the same manner as base excision 

repair. [17] [18] 

 Double strand breaks are especially serious and can often be lethal. The preferred 

method of repair is recombination since it is likely to result in exact copying of the original 

segment. The process includes formation of a Holliday junction (or four-way DNA 

junction). This is accomplished by accessing the homologous portion of another gene. One 

strand of the undamaged DNA crosses over and the displaced strand of the damaged DNA 

proceeds with a second cross-over. DNA polymerase then uses the undamaged portions as 

a template to create the complementary bases, endonuclease cleaves and removes the 

damaged portions, and ligase seals both ends of both genes. [18] The other method of DSB 

repair is nonhomologous end-joining which simply reattaches the two ends of damaged 

DNA, trims any excess, and seals the backbone. This is a quick method of repair, but also 

extremely error-prone and likely to results in lost genetic information. 
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 Photoreactivation, or damage reversal is activated when DNA has sustained photo 

damage, typically from UV. This damage includes “two major lesions, cyclopyrimidine 

dimers and 6,4-photoproducts, which cross-link adjacent pyrimidines, resulting in a 

distortion of the DNA duplex.” [17] This damage can be directly reversed by photolyase 

which reorders the incorrect covalent bonds between the adjacent bases. [18] 

Deinococcus radiodurans DNA Damage and Repair 

 All organisms employ various methods of repairing DNA damage and each of these 

methods is controlled via their own sequences also held within the DNA. Some of the repair 

mechanisms are designed to repair SSB while others are for DSB. Zaradhka et al. noted six 

known repair mechanisms employed by prokaryotic and eukaryotic cells “either alone or 

in some combination to rejoin hundreds of partially overlapping chromosomal fragments 

[including] non-homologous end joining, homologous recombination at the fragment ends, 

intra- and interchromosomal single-strand annealing (SSA), synthesis-dependent-strand 

annealing (SDSA), break-induced replication, and copy choice.” The authors then go on to 

state that they have excluded each of these repair mechanisms as being a primary 

mechanism attributable to DRs exceptional repair ability. They then identify a previously 

unknown mechanism that they term extended synthesis-dependent strand annealing 

(ESDSA) that is coupled with crossover to reassemble the fragmented DNA that results 

from either irradiation or desiccation. [13]  

 The main requirements for ESDSA to be implemented are two complete 

chromosomal copies where at least one experiences DSB. The process begins when two 

fragments with overlapping homologous base pairs “are used both as primers and as 
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templates for massive synthesis of complementary single strands.” [13] ESDSA then 

assembles the smaller fragments into larger intermediates and then crossovers complete the 

recombination with the chromosomes arranged in a circular plasmid. [14] Figure 3. depicts 

the ESDSA mechanisms for repairing DNA damage.  

 

 

Figure 2. The ESDSA repair process. Reprinted under the Creative Commons Attribution License. 

[8]  
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 As far as can be ascertained through an exhaustive literature search, D. radiodurans 

is the only organism known to employ this mechanism for DNA repair. Using this method 

each bacterium can theoretically sustain hundreds of DSB with full recovery and minimal 

latency. While the bacterium is unique in employing this method, it should be noted that 

this is not unlike mechanisms employed by other organisms. D. radiodurans just seems to 

be more efficient in the employment of common repair pathways and takes a slightly 

different approach. The organism will only be incapable of repair if the fragments are too 

small to provide sufficient homologous overlaps of DNA with which to perform ESDSA. 

Role of recF in DNA Repair 

  Following an event in which the organism experiences DNA damage there are a 

number of repair mechanisms that are moderated and regulated by various proteins. The 

formation of these proteins is encoded in the genome and the method by which they 

function is known as the pathway. The recF pathway has been noted as a critical component 

in the ESDSA process, particularly for DSB repair. The recF protein acts in concert with 

the recO and recR to “promote loading of RecA onto single stranded DNA” which are 

“dependent strand invasion [proteins] to prime DNA synthesis.” [14] Bentchikou et al. note 

that cells devoid of the recF pathway showed impaired growth suggesting it is also 

involved in cell division.  

 While recF has been proven to play a central role in DNA repair, it should also be 

highlighted that no single recombination pathway works in isolation. Rather, they each are 

dependent on other pathways to completely and correctly reconstitute the genome 

following DSB. It should also be noted that different pathways play either critical or minor 
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roles in the repair process depending on the type and severity of the damage incurred (ie. a 

few SSB vs. many DSB.) It should also be noted that DSB repair mechanisms are up-

regulated immediately prior to cell division since the gametes are broken during the 

division and crossovers are required to reconstruct the broken portions in both the parent 

and the daughter cells. 

Role of uvrB in DNA Repair 

The uvrB pathway also plays a central role in DNA repair, although it is believed 

to serve primarily as a SSB repair mechanism. As previously stated, no pathway works in 

isolation and this is especially true for uvrB. The pathway is actually a complex of proteins 

including both uvrA and uvrB. The repair process begins “when the UvrA2UvrB2 complex 

encounters a region of DNA which is distorted by the presence of a DNA lesion 

unconnected with transcription [in a] process known as global genome repair (GGR).” [16] 

In GGR, once the Uvr2 dimer is recruited to the site of DNA damage, it then “passes 

the damaged region of DNA to UvrB, which uses a beta-hairpin to verify the damaged 

nucleotide on one of the two DNA strands.” [16] Once UvrB has locally unwound that 

portion of DNA and verified that there is a lesion, it then recruits UvrC to the site in order 

to excise the damaged region. At this point, the UvrB releases from the site and its role is 

complete. Surprisingly, the mean lifetime of a UvrB protein bound to a lesion is ~30s. [16] 

It is clear that UvrB plays a central role in DNA repair involving SSB, and it is also clear 

that the process proceeds rapidly allowing a cell to perform many repairs throughout a 

single division cycle. Since uvrB does not play a role in ESDSA it was chosen as the target 

gene for deletion in order to isolate the two repair pathways.  
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High LET and Low LET 

 A common misconception is that particles with higher energy will cause greater 

damage to a cell than particles with lower energy. While this may hold true at the 

macroscopic level or for high density materials, it can be quite the opposite for cellular 

interactions at the atomic level. Linear energy transfer describes the amount of energy an 

ionizing particle imparts to a material over a traversed distance.   

𝐿𝐸𝑇 =  
𝑑𝐸𝐿

𝑑𝑥
 

 High LET particles deposit large amounts of energy into the target medium while low 

LET particles do not impart much energy in the medium through which it passes. The linear 

energy transfer is independent of the particle’s kinetic energy. In the case of atomic 

particles, those with low LET are likely to pass completely through thin materials with low 

densities without depositing much energy while high LET particles are more likely to be 

stopped and deposit all their energy. For reference, an alpha particle incident to tissue with 

an initial energy of 5.3 MeV will end its track at about 35 μm. This means that nearly all 

of that energy will be deposited at a depth of 35 μm for all particles. [5] 

 The significance of the energy transfer is the likelihood that the particle will induce a 

break in DNA, particularly double-stranded, within a cell. In this research the samples will 

be desiccated to drastically reduce the possibility of HCP-water interactions (and the 

accompanying formation of ROS) during exposure so the preponderance of DNA damage 

will be direct. The energy will be selected such that most of the incident particles will 

deposit their energy at half the total depth of the samples and the energy will be sufficiently 

high to induce double-stranded DNA breaks.   
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Heavy Charged Particle Interactions 

  Photons such as gamma or UV primarily interact with matter via Compton scatter 

or the photoelectric effect. Compton scattering occurs when a photon is incident to a target 

atom. The atom recoils, carrying away some energy, and the photon is scattered at an angle 

with a longer wavelength (and lower energy.) The photoelectric effect occurs when a 

photon of sufficient threshold energy is incident to an electron resulting in the ejection (or 

emission) of the electron.  

  Uncharged neutrons interact with matter through elastic and inelastic scatter, 

neutron capture, or spallation. Elastic scatter involves an incident particle striking a target 

particle. Both recoil with a conservation of energy in the system. Inelastic scattering occurs 

when the incident particle has comparatively low kinetic energy. When it collides with a 

target particle all the energy is imparted and it comes to rest. Neutron capture involves a 

neutron merging with the nucleus of another atom to form a heavier isotope. This does not 

occur with heavy charged particles. Spallation refers to the emission of neutrons from a 

target nucleus after a high-energy particle has impacted it. In these cases, the incident 

photons or uncharged particles must be inside the range of the strong force (about 10-15 m.)  

  In contrast, heavy charged particles experience Coulombic interactions with the 

electrons and nuclei in the medium over much greater distances (about 10-12 m.) The 

majority of the energy is transferred at the end of the path length of the particle over a very 

small distance. One would expect that a given flux of HCPs would deposit more energy 

into a target than an equivalent flux of neutrons primarily due to the mass of the particle 

and the velocity it is travelling. The impact of indirect DNA damage through reactive 

oxygen species will be discussed but generally ignored because all target samples will be 
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desiccated. In this research it is expect that nearly every incident particle will interact with 

the sample in some manner and many of these interactions will result in direct damage in 

the form of a double-strand break. 

Deinococcus radiodurans and Mutant Strains  

Previous research conducted by the Air Force Institute of Technology (AFIT) in 

collaboration with the United States Air Force School of Aerospace Medicine 

(USAFSAM) utilized the R1 strain of D. radiodurans. Three mutant strains were 

subsequently developed at USAFSAM in order to investigate their survivability in UV, 

low LET neutron and high LET proton experiments. [4] Mutant #5 consisted of a 

manganese superoxide dismutase (SOD) knockout. Mutant #8 was a double copper/zinc 

SOD knockout. These genes were chosen for deletion because the production of SOD 

allows the cell to neutralize superoxide radicals into less harmful species. And finally, 

Mutant #11 was a bshA knockout. This gene produces an enzyme that is involved in the 

biosynthesis of a small molecule antioxidant, bacillithiol, which participates “in the 

destruction of reactive oxygen species and harmful xenobiotic agents.” [11] Since all three 

of these mutant strains deal with reactive oxygen species that form when the cells are 

hydrated, they are expected to behave in a similar manner to wild type when exposed to 

both ultraviolet radiation and HCP while dehydrated. 

In addition to the three mutants previously created, this project required the 

development of two additional mutant strains. Mutants #1.5 and #6A are recF knockouts 

while Mutants #16 and #27 are uvrB knockouts. As noted above, recF is a recombinant 

gene that aids in the repair of DNA damage, particularly from double-stranded breaks. The 
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uvrB gene aids in the repair of DNA damage, particularly from single-stranded breaks as 

are usually experienced from ultraviolet exposure. The uvrB and recF mutants are expected 

to experience greater kills rates following both UV and HCP exposure than wild type since 

these repair genes are necessary to repair direct DNA damage. The complete list of the 

mutants used in this research can be found in Table 1. 

 

Table 1. Deinococcus radiodurans R1 Stain List 

# Gene KO Common Name Proper Genotype 

1 none WT  

1.5 recF recF 'merodiploid' WT 

and ΔrecF::KAN 

5 DR_1279 Mn SOD DR_1279::mlox 

8 DR_1546 

DR_A0202 

Cu/Zn SOD 

Cu/Zn SOD 

DR_1546::KAN 

DR_A0202::NAT 

11 bshA Bacillithiol Biosynthesis bshA::mlox 

16 uvrB uvrB uvrB::KAN 

6A recF recF 'merodiploid' WT 

and ΔrecF::KAN

27 uvrB uvrB uvrB::KAN
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III. Methodology 

Chapter Overview 

The purpose of this chapter is to describe the methods for achieving gene knockouts 

for the uvrB and recF genes. It provides a thorough examination of the process of sample 

preparation prior to treatment. In addition, it covers the selection of an appropriate 

bombarding particle as well as the calculation of the necessary energy and fluence to 

achieve proper exposures. It will conclude with a detailed explanation of the post-

irradiation processing of the samples.  

Deinococcus Radiodurans uvrB Knockout 

Cloning of Knockout Plasmid 

The first step in the homologous recombination knockout process involved ordering 

six primer sets from Integrated DNA Technologies (IDT Inc). These primer sets were used 

to PCR amplify 3 fragments of DNA. One fragment provided homology upstream of the 

target gene, a second fragment provide a selectable Kanamycin resistance gene that 

replaced the deleted gene sequence and the third fragment provided homology downstream 

of the deletion. The PCR primers were designed to have 10 to 20 base pair overhangs that 

are homologous to the fragments of DNA that will be linked adjacent. These primer-

supplied short regions of homology provided the needed sequences for the NEBuilder 

cloning system to link multiple DNA fragments in a single reaction. Table 2 shows a 

complete list of the primer sequences.  
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Table 2. uvrB Primer Sequences 

Primer Name Sequence    

Puc_UvrBUp_Fwd  ttgtaaaacgacggccagtgTGC

GCAAGGTACCGCAGATGC 

Puc Uvr_Upstream Fwd 

Kan_UvrBUp_Rev acgaacggtaCCTGCGCGCC

ACGACCAC 

Kan Uvr_Upstream Rev 

UvrBUp_Kan_Fwd ggcgcgcaggTACCGTTCGTA

TAGCATAC 

Uvr_Upstream Kan Fwd 

UvrBdown_Kan_Rev tgccttctgcTACCGTTCGTAT

AATGTATG 

Uvr_downstream Kan Rev 

Kan_UvrBdown_Fwd acgaacggtaGCAGAAGGCA

CGGCGGAA 

Kan Uvr_downstream Fwd 

Puc_UvrBdown_Rev atccccgggtaccgagctcgGTA

CCAGAAGCTGCTCAACAA

ATGG 

Puc Uvr_downstream Rev 

 

All six primer lyophilized powders were suspended to 100μM in 0.1xTE Buffer at 

a pH of 7.5 while kept on ice to prevent degradation. Each primer was then diluted 1:10 in 

molecular biology grade water to 10μM. 20μl of DR genomic stock at 529ng μl-1 was added 

to 180μl of water for a 1:10 dilution. The pUCIDT-Amp::KANkanp plasmid stock at an 

initial concentration of 144ng μl-1 was diluted 1:25 and then 1:100 to achieve 50pg μl-1 thus 

completing the template DNA dilutions. A PCR cocktail was created for a 50μl polymerase 

chain reaction (PCR). The PCR is designed to amplify the DNA fragments in preparation 



www.manaraa.com

20 

for the gene knockout construct cloning. Table 3 shows the complete PCR template 

cocktail. 

 

Table 3. Genomic Template and PCR Cocktail 

PCR Cocktail with Genomic Template: 1x reaction 8x reaction 

Molecular Biology Grade Water 21.5μl 172μl 

10mM dNTPs 1μl 8μl 

DR Genomic @ 50ng μl-1 2μl 16μl 

5x Q5 Reaction Buffer 10μl 80μl 

5x Q5 High GC Enhancer 10μl 80μl 

Q5 DNA Polymerase  0.5μl 4μl 

Total 45μl 360μl 

 

The Kan primers require a plasmid template cocktail in order to properly amplify. 

Table 4 shows the complete PCR plasmid cocktail.  

 

Table 4. Plasmid Template and PCR Cocktail 

PCR Cocktail with Kan 

Plasmid Template: 

1x reaction 3x reaction 
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Molecular Biology Grade 

Water 

21.5μl 64.5μl 

10mM dNTPs 1μl 3μl 

Kan Plasmid @ 50pg μl-1 2μl 6μl 

5x Q5 Reaction Buffer 10μl 30μl 

5x high GC Enhancer 10μl 30μl 

Q5 DNA Polymerase 0.5μl 1.5μl 

Total 45μl 135μl 

 

Once the cocktail had been mixed, 2.5μl of each 10mM primer stock was added to 

45μl of the genomic cocktail for a total of 50μl for PCR reactions 1 and 3. 2.5μl of each 

10mM primer stock was added to 45μl of the plasmid cocktail for reaction 2. Table 5 shows 

the combinations for each reaction. 

 

Table 5. PCR Primer Combinations 

Reaction Number Reaction Name Forward Primer Reverse Primer 

1 uvrB up Puc_uvrBUp_Fwd Kan_UvrBUp_Rev 

2 uvrB Kan UvrBUp_Kan_Fwd UvrBdown_Kan_Rev 

3 uvrB down Kan_UvrBdown_Fwd Puc_UvrBdown_Rev 
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The reactions were moved to a thermocycler for amplification. The thermocycler 

was programmed to take reaction 2 through 98°C for 3 minutes, then 30 cycles of (98°C 

for 1 minute, 56°C for 30 seconds, 72°C for 1 minute), then 72°C for 2 minutes and hold at 

4°C. The thermocycler was programmed to take reaction 1 through 98°C for 3 minutes 

then 30 cycles of (98°C for 1 minute, 72°C for 30 seconds, 72°C for 1 minute), then 72°C  

for 2 minutes and hold at 4°C . And finally, it was programmed to take reaction 3 through 

98°C  for 3 minutes then 30 cycles of (98°C  for 1 minute, 66°C  for 30 seconds, 72°C  for 

1 minute), then 72°C  for 2 minutes and held at 4°C . 

Following PCR amplification, 10μl of 6x Sample Buffer was added to each 50μl 

PCR reaction. The entire reaction was loaded in two lanes (30µl per lane) of 0.8% agarose 

gel in 1xTBE with 5μg ml-1 ethidium bromide and run for 30 minutes at 150 volts. The 

entire gel was placed over an ultraviolet light box and the bands visualized against a ladder 

standard. Using a razor blade, the ~1000 base pair bands were cut from the gel and 

distributed in 1.5ml microfuge tubes with no more than 300mg of gel slice per tube. The 

DNA fragments were isolated using a Qiagen gel extraction kit. Figure 4 depicts a sample 

placed over the UV light box. 
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Figure 3. UV visualization of DNA fragments. The bright band consists of ~1000 base pair fragments 

as compared to the standard ladder at either end. 

 

Escherichia coli Transformation 

Following PCR amplification of the DNA insert fragments, an additional plasmid 

vector for cloning was prepared. Escherichia coli (E. coli) NEB5 alpha bacteria with the 

pUC19mPheS plasmid were streaked for isolation on an LB agar plate with 50μg ml-1 of 

Carbenicillin. The plates were then incubated overnight at 37°C in an unsealed plastic bag 

to prevent the agar from drying. The following day a single colony from the plate was 

inoculated into 30ml of LB broth with 50μg ml-1 of Carbenicillin in a 125ml flask. The 

flask was incubated overnight at 37°C and 220 RPM. The following day the media was 
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transferred to a 50ml conical tube and pelleted by centrifugation at 3500 RPM for 20 

minutes. The pelleted cells were then re-suspended in 750μl of Qiagen P1 buffer and then 

another 750μl of Qiagen P2 buffer was added to the mixture in order to lyse the cells. The 

mixture was incubated for 5 minutes and then 1050μl of Qiagen N3 buffer was added to 

neutralize the alkaline solution as well as precipitate cell debris. The DNA was then 

isolated using Qiagen Mini spin columns and the concentration measured on a Nanodrop 

spectrophotometer.  

Once the plasmid DNA was isolated and measured at 124.9ng μl-1, a digest was set 

up to linearize the plasmid for use with the NEBuilder Cloning kit. The full reaction 

mixture is listed in Table 6. The mixture was incubated at 37°C overnight. The following 

morning sample buffer was added to the reaction and the entire mixture was loaded across 

three lanes of 0.8% agarose gel in 1xTBE with 5μg ml-1 of ethidium bromide and 

electrophoresed at 150 volts for 30 minutes. The gel was visualized on a UV light box and 

the plasmid DNA band at ~3895 base pairs was cut and distributed into 1.5ml microfuge 

tubes. The plasmid DNA was isolated using a Qiagen gel extraction kit and the 

concentration measured on a Nanodrop spectrophotometer. 

 

Table 6. pUC19mPheS EcoRI Digest for NEBuilder Cloning 

Digest Mix:  

Molecular Biology Grade Water 54μl 

pUC19mPheS Plasmid DNA 32μl 
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10x NEB EcoRI Buffer 10μl 

NEB EcoRI Enzyme U μl-1 4μl 

Total 100μl 

 

Once the linearized plasmid DNA was isolated and the concentration was 

determined, the NEBuilder cloning kit was used to assemble the three PCR fragments and 

link them into the linearized plasmid backbone. To isolate intact gene knockout plasmids, 

2µl of the NEBuilder reaction was used to transform E. coli dam- dcm- competent cells by 

the NEB Inc. protocol. The E. coli dam- dcm- were used to yield unmethylated plasmid 

DNA which transforms D. radiodurans at a much higher frequency than methylated DNA. 

After plating on LB agar containing 32ug/ml Kanamycin and incubation at 37°C overnight, 

four isolated colonies were picked, suspended in 20ul of LB broth and 2ul of this suspended 

bacteria were screened for correct clones by colony PCR using 2x Quickload Taq Master 

Mix in a 50µl reaction. The mixtures were then placed in a thermocycler programmed to 

take reaction through 980C for 2 minutes, then 30 cycles of (980C for 30 seconds, 680C for 

3 minutes), then 680C for 5 minutes and hold at 40C. To observe if the bacteria had clones 

of the proper insert size of ~3000bp, 25ul of each reaction was electrophoresed in a similar 

manner as described above. Positive clones were chosen and the remaining 18μl of 

suspended colony was used to inoculate 30ml of LB broth with 32μg ml-1 Kanamycin in a 

125ml flask. After an overnight incubation the cells were pelleted, lysed, and the plasmid 

DNA isolated. As an additional check for having the correct knockout plasmid clones, 

plasmids were diluted to 0.5ng μl-1 and then 2μl were placed into PCR tubes. These 
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templates were then mixed with a PCR cocktail and moved to a thermocycler programmed 

to take the reaction through 94°C  for 2 minutes then 30 cycles of (94°C  for 30 seconds, 

60°C  for 30 seconds, 65°C  for 3 minutes), then 65°C  for 10 minutes and held at 4°C . 

The full reaction cocktail can be found in Table 7. 

 

Table 7. PCR Cocktail with Genomic Template for DR transformation 

PCR Cocktail with Genomic 

Template 

1x reaction 15x reaction 

Molecular Biology Grade Water 29μl 435μl 

10mM dNTPs 1.5μl 22.5μl 

Forward Primer @ 10μM 2μl 30μl 

Reverse Primer @ 10μM 2μl 30μl 

5x LongAmp Taq Reaction Buffer 10μl 150μl 

DMSO (Final Conc. 3%) 1.5μl 22.5μl 

LongAmp Taq DNA Polymerase 2μl 30μl 

Total 48μl 720μl 

 

Following PCR, 20µl of the PCR reaction was mixed with 6µl of Orange G sample 

buffer and the mixture was loaded onto a 0.8% agarose gel with 0.5μg ml-1 of ethidium 

bromide and electrophoresed at 150 volts for 30 minutes. This PCR check confirmed the 

previous colony PCR result of having correct knockout clones. This process completed 
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“stitching” the DNA primer fragments into a final unmethylated plasmid ready for DR 

transformation. 

Deinococcus radiodurans Transformation 

D. radiodurans transformations to introduce the knockout plasmids into the cells 

allowing for the plasmid integration into the host chromosome by homologous 

recombination were carried out as follows. D. radiodurans R1 wild type bacteria were 

struck for isolation from a frozen glycerol stock on 1xTGY agar and incubated at 32°C for 

2 days in an unsealed ziplock bag to prevent drying. A single colony was inoculated into 

5mls of 1xTGY broth in a 14ml round bottom snap cap tube and incubated overnight at 

32°C and 220 RPM. The overnight culture was diluted to an Abs. @ 600nM of 0.2-0.3 in 

20mls of 1xTGY in a 125ml flask and incubated 2 hours at 32°C and 220RPM. After the 

2 hours, 2.2mls of 300mM CaCl2 was added to a final concentration of 30mM CaCl2 and 

the incubation was continued for 2 hours at 32°C and 220RPM. After the CaCl2 two hour 

incubation, 100µl aliquots of the culture were transferred to sterile 1.5ml microfuge tubes 

on ice. One µg of knockout plasmid DNA was added to the cells, mixed gently and 

incubated on ice for 1 hour. The DNA/cell mix was then transferred to 14ml round bottom 

snap-cap tubes containing 1ml of 1xTGY broth and were incubated overnight at 32°C and 

220RPM for an extended grow out. The overnight grow out cultures were then diluted 1:10 

7x in series (20µl in 180µl 1xTGY broth) using a multichannel pipet. Five microliters of 

each dilution of the dilution series was spotted on 1xTGY agar containing 16ug/ml 

kanamycin. The spots were allowed to dry and the plates were inverted and incubated at 

32°C for 2-3 days. Any resulting Kanamycin resistant D. radiodurans colonies presumably 

had the plasmid integrated into the chromosome by single crossover homologous 
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recombination but the second homologous crossover event may or may not have occurred 

resulting in the complete final gene deletion. 

Knockout Selection 

To select for isolates where the second homologous crossover has occurred and 

thus have the complete gene deletion, 5-10 isolated Kanamycin resistant colonies from 

each transformation dilution spotting were picked and mixed on the agar surface in the 

same area of a 5mM 4-Chloro-Phenylalanine (4-CP) 1xTGY agar plate with 16ug/ml 

Kanamycin. From this mix area a loop was used to streak for isolation. These 4-CP patch 

plates were incubated at 32°C for 2 days in unsealed ziplock bags to prevent drying. The 

4-CP is a counter-selection agent that prevents any bacteria with the mutated pheS gene 

(mPheS) from growing. Thus, only bacteria in which the second homologous 

recombination crossover event has occurred and have lost the knockout plasmid backbone 

containing the mPheS gene will grow. Isolated colonies that are resistant to Kanamycin 

and 4-CP were chosen, grown up, frozen down as glycerol stocks and had genomic DNA 

isolated. The genomic DNA was diluted and used as PCR template to confirm that the 

desired uvrB gene knockouts had been isolated. Two confirmed uvrB knockouts used in 

this study are Mutant #16 and Mutant #27. 

Deinococcus Radiodurans recF knockout 

 The recF knockout procedures were nearly identical to those described in the 

section above. The only difference was that the PCR amplification of the mutants did not 

indicate a complete loss of wild type recF despite the mutants being Kanamycin and 4-CP 

resistant. Attempts were made to segregate a fully deleted recF isolate but all efforts 
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resulted in a mix of wildtype and deleted recF. Therefore the recF mutants are 

merodiploids. Two samples were frozen as glycerol stocks and labeled as Mutant #1.5 and 

Mutant #6A. The recF primer sequences are listed in Table 8. 

 

Table 8. recF Primer Sequences 

Primer Name Sequence    

Puc_RecFup_Fwd ttgtaaaacgacggccagtgT

GTGTTCGACCGCTTGCC 

Puc RecF_upstream Fwd 

 

Kan_RecFup_Rev acgaacggtaTAGACAGG

GCCGAGAGAC 

Kan RecF_upstream Rev 

RecFup_Kan_Fwd gccctgtctaTACCGTTCGT

ATAGCATAC 

RecF_upstream Kan Fwd 

 

RecFdown_Kan_Rev catctcctcaTACCGTTCGT

ATAATGTATG 

RecF_downstream Kan Rev 

Kan_RecFdown_Fw

d 

acgaacggtaTGAGGAGA

TGCAAGCGGAGGG 

Kan RecF_downstream Fwd 

 

Puc_RecFdown_Rev atccccgggtaccgagctcgTT

CCGGCAGCGCGCGGTA 

Puc RecF_downstream Rev 

 

Sample Culture Preparation 

 All seven mutant strains as well as the wild type were streaked for isolation on Agar 

plates. Mutants #1.5, #16, #6A, and #27 were streaked on 1xTGY Kan 16µl ml-1. Wild 

type #1 and Mutant #11 were streaked on 1xTGY, and Mutant #8 was streaked on 1xTGY 
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Kan 16µl ml-1 NAT 50µg ml-1. The plates were incubated for 48 hours at 32°C in unsealed 

plastic bags. Single colonies were placed in 14ml round bottom snap cap tubes with 5ml 

of TGY broth and selective antibiotic(s) if necessary. The cultures were incubated 

overnight at 32°C and 220RPM for aeration. The cultures were then diluted 1:100 by 

placing 200µl of culture in 20ml of broth in a 125ml vented cap flask with appropriate 

selective antibiotics. The cultures were incubated overnight at 32°C and 220RPM for 

aeration. The cultures were diluted 1:10 by placing 100µl of culture in 900µl of broth and 

the 600nm absorbance was measured on the Nanodrop spectrophotometer against a broth 

blank. The amount of culture to be added to 40ml of TGY broth in order to achieve an Abs. 

at 600nm of 0.25 could then be calculated by the following equation. 

40𝑚𝑙 ∗
0.25

10 ∗ 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒
= # 𝑜𝑓 𝑚𝑙 𝑜𝑓 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 

The calculated culture volumes were added to 40ml of TGY broth in a 250ml vented cap 

flask and incubated for 4 hours at 32°C and 220 RPM for aeration. After the incubation 

period, 1ml of culture was placed on the Nanodrop spectrophotometer to measure the 

OD600. If, after 4 hours, the OD600 readings were at 0.5 then the cultures were in early log 

phase. 30ml of each culture was placed in a 50ml tube and the cells were pelleted by 

centrifuge at 3500 RPM for 20 minutes. The supernatant was discarded. A calculation was 

performed to determine the appropriate amount of media to re-suspend the cells in to 

achieve an Abs. at 600nm of 5. 

30𝑚𝑙 ∗
𝑂𝐷600

5
= # 𝑚𝑙 𝑜𝑓 𝑚𝑒𝑑𝑖𝑎 

As shown by Lenker, an OD600 of 5 equates to 2-5 x 108 colony forming units (CFU) per 

ml. [4] 
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Sample Plate Preparation 

 After all eight strains of D. radiodurans were suspended to an Abs. at 600nm of 5 

they were moved into a biosafety containment laminar flow hood in order to reduce the 

likelihood of contamination and aid in the drying process. Utilizing a single-channel 

pipette, 60µl of each strain was deposited into the corresponding “well” of a 96-well plate 

lid as shown in Figure 5. As is shown, the strain label was located in the well immediately 

above the 60µl spot. The tube was continually mixed by hand in order to ensure uniform 

density between the spots. 

 

 

Figure 4. Sample plate configuration for every experiment. The shaded wells denote location of 

actual cell spots with strain labels located in the well immediately above the spot. 
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 Once all the samples had been spotted to the plate lids, they were covered with the 

bottom portion of the 96-well plate slightly ajar. They were then allowed to dry overnight. 

Once all the samples had completely dried they were wrapped in parafilm and placed in a 

drawer either in preparation for shipment or to simulate shipping. 

 Three sets of serial dilutions were performed for each strain to determine the input 

CFU. The top well of the plate contained 200µl of each strain (ie. Cell A1 had #1, cell A2 

had #1.5, cell A3 had #5, etc.) It was then diluted 1:10 through seven dilutions by pipetting 

20µl from the row into 180µl of 1xTGY broth in the row below using a multichannel 

pipette. The dilution layout is depicted in Figure 6. 
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Figure 5. Dilution series layout. 

 

 Using a multichannel pipette, 5µl from each column were spotted to 1xTGY Agar 

plates. The spots were allowed to dry and then placed in unsealed plastic bags. The plates 

were then incubated at 32°C for 48 hours. Figure 7 depicts spotting from a dilution series. 
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Figure 6. Dilution series for an untreated sample. 

 

 As noted by Lenker, the plate lids were used due to size constraints of the stage 

mounted in Sandia National Laboratory’s (SNL) QASPR-3 (Qualification Alternative to 

the Sandia Pulse Reactor 3) tandem ion beam. [4] The same methods were employed in 

this experiment. The technicians at SNL had already worked with that geometry and it was 

thought to be in the best interest of time to replicate the setup. Ten total plates were shipped 

to SNL in a tightly packed and padded box. Two plates were destined to be untreated and 

unvacuumed experimental controls. Two plates were to be untreated but vacuumed, and 

then two plates were designated for each exposure level at 500, 1000, and 10,000 Gy. The 

samples were shipped two days after desiccation and arrived six days after desiccation. The 

first plate was mounted to the stage eight days following desiccation of the plates. 
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UV Protocol Test 

 The UV test consisted of eight total plates. After a day sitting in a drawer to simulate 

shipping the plates were vacuumed to 10-4 torr for 15 minutes. This was to simulate the 

vacuum process that the SNL samples would experience. Four were untreated and simply 

re-wrapped with parafilm and placed back in the drawer to simulate shipment from SNL. 

The remaining four were treated with 9999 J m-2 of UV in a UV Stratalinker 1800, shown 

in Figure 8.  

 

 

Figure 7. Stratalinker 1800 used to impart 9999 J m-2 of UV energy onto the samples. 

The samples were raised approximately 2cm in order to situate the plate lid as close to the 

sensor as possible. Following irradiation the plates were wrapped in parafilm and also 

placed in the drawer. This provided eight replicates of each strain treated, and eight 

replicates untreated. 



www.manaraa.com

36 

Rehydration of Samples and Spotting Post UV Irradiation 

 The day following UV treatment, the samples were rehydrated by using a single-

channel pipette and placing 60µl of fresh TGY broth. The samples were pipetted up and 

down approximately 20 times. The media remained on the plate lid while the next spot was 

rehydrated in the same manner. Once all eight strains were rehydrated they were again 

pipetted up and down approximately 20 times to ensure as many cells as possible were 

fully re-suspended. The ~60µl sample was placed in the top well of a 96-well plate and 

each strain was run through a full dilution series as depicted in Figure 4. Then 5µl from 

each well in the column was placed on a 1xTGY agar plate and the spots were allowed to 

dry. The plates were partially sealed in a plastic bag and incubated at 32°C for 48 hours. 

Colony Counting Post UV Irradiation 

 Following the incubation period, individual colonies were visually counted. The 

untreated controls were all counted at the 10-5 dilution. Most of the treated colonies were 

counted at the 10-4 dilution. The colony counts are reported in Appendices A-H.  Figure 9 

shows an untreated control and Figure 10 shows a treated plate for comparison.  
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Figure 8. Untreated control plate from UV experiment. The strains, moving left to right, are wild 

type #1, Mutant #5, Mutant #8, Mutant #11, Mutant #16, Mutant #6A, and Mutant #27 

 

 

Figure 9. Treated plate from UV experiment. The strains, moving left to right, are wild type #1, 

Mutant #5, Mutant #8, Mutant #11, Mutant #16, Mutant #6A, and Mutant #27 
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Oxygen Ion Generation 

 SNL’s QASPR-3 Tandem accelerator is capable of accelerating ions from hydrogen 

to gold in energies from 800keV to 10s of MeV. The ions are sputtered off of a negative 

ion source and then accelerated towards the positive terminal. The ions pass through a 

nitrogen stripper gas that removes the electrons. This produces a range of positive ions that 

are then accelerated away from the positive terminal. Magnets allow selection of a specific 

ion species and charge state on target. The landing energy is determined by multiplying the 

charge state plus one by the terminal voltage and is tuned by the terminal voltage. 

 Beam spot sizes vary between 0.001mm and 4mm and are, therefore, much too 

small to cover the entire cell spots in a single shot. SNL has developed an implantation 

technique where they characterize the beam and then move the sample on an x,y stage and 

“stitch” the shots together to achieve the desired total fluence. The error with this technique 

is typically 2-10%. The beam operates under a vacuum and is capable of 10-7 torr.  The 

chamber and x,y stage are pictured in Figure 11. 

 Initial efforts were directed towards irradiating with helium ions. However, the 

beam was very unstable, likely due to the influence of local free fields. A heavier ion was 

desired in order to achieve a stable beam that could be easily and quickly characterized. 

For this reason, oxygen was chosen as the incident ion. 
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Figure 10. QASPR-3 Tandem target chamber with mounted x,y stage. 

 

Oxygen Ion Dose Calculations 

Lenker established that a 60μl drop desiccated on the plate lid creates an average 

cell layer depth of about 21.7 microns, which corresponds to 7 cell layers, with a cell 

density of 0.9392g cm-3 [4]. Since nearly all the energy of the bombarding particles is 
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imparted at the end of range, the experiment was designed to calculate the necessary energy 

that resulted in an ion range of approximately 9-11 microns. This was to ensure that the 

particles did not pass completely through the targets since it would impart very little energy 

and would be less likely to create DNA damage. The energy was calculated utilizing SRIM 

and TRIM [15] with the proscribed values. The input parameters, ion ranges, and ionization 

with energy loss plots are shown in Figures 12-14, respectively. 

 

 

Figure 11. Input parameters for energy calculation of bombarding oxygen ions.  
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Figure 12. Ion ranges from 7.8MeV oxygen ions. 

 

Figure 13. Energy loss of the bombarding particles due to ionizations in ev Å-1. Recoils are the 

secondary ions created from knock-on collisions from the incident particles. The method of 

ionization is irrelevant to this research. 
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 As can be seen in Figure 13, 7.8MeV oxygen ions have a range of 9.71μm which 

is just under half of the target cell depth. Theoretically, one could kill a maximum of three 

to four cell layers from the oxygen exposure, or about 50% of the total cells. The 

experiment entailed exposing samples to either 500, 1000, or 10,000 Gy of radiation. Using 

an energy loss value of 121 ev Å-1 as shown in Figure 14 the necessary fluence can be 

calculated. The differences in exposure fluences merely impact the amount of time the gate 

is open on the beam line. Higher fluences equate to a greater number of particles incident 

to the target, but the energy (and resultant penetration) is the same for every exposure. The 

error in fluence values remained within two percent for the duration of the test. Target 

fluence values are shown in Table 9. 

𝐷𝑜𝑠𝑒 =  
𝐼𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝐷𝑒𝑛𝑠𝑖𝑡𝑦
∗ 𝐹𝑙𝑢𝑒𝑛𝑐𝑒 

 

Table 9. Oxygen Dose per Well 

Target Exposure (Gy) Fluence (ions cm-2) (± 8%) 

500 2.42x108 

1000 4.84x108 

10,000 4.84x109 

 

Oxygen Irradiation of Samples 

The samples were desiccated two days prior to shipment to SNL which took four 

days. Thirteen days after desiccation, the non-irradiated, vacuumed controls were placed 
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in the chamber under vacuum at 10-7 torr for 60 hours. The radiation experiment began 17 

days after desiccation and concluded at 20 days. The samples were returned to USAFSAM 

at 25 days and rehydration began at 30 days. The non-irradiated, non-vacuumed control 

was included to determine cell survival after nearly a month spent dehydrated. 

For the experiment, the plate lid was adhered to the x,y stage mounted within the 

QASPR-3 target chamber. The stage had limited mobility and only three wells could be 

irradiated at a time. Once complete, the chamber was re-pressurized and the plate lid was 

physically remounted in order to treat the next three rows. This resulted in each plate 

experiencing eight cycles of vacuum and re-pressurization. 

Once the plate was mounted on the stage and the chamber was under vacuum, the 

beam spot size was characterized by placing it over a phosphorus target and measuring the 

intensity of the fluorescence via a camera. The size (area), shape, and intensity of the beam 

determined the number of shots required to cover the spots as well as the correction factor 

needed to “stitch” the shots together for a uniform exposure. Beam sizes varied from 

1.5mm to 2mm so some spots required a 4x4 grid while others required a 4x5 grid to 

irradiate the entire sample. Once the beam was characterized, the software calculated the 

necessary time to keep the gate open on the beam line in order to achieve the desired 

fluence. Throughout the experiment, the beam never exceeded eight percent variation of 

the desired fluence and most of the spots were within five percent. On average, the 

technician was capable of completing one and a half plates per day and all exposures were 

completed within four days. 
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Rehydration of Samples and Spotting Post Oxygen Irradiation 

 The samples were rehydrated in an identical manner to those processed in the UV 

experiment. Using a single-channel pipette, 60µl of fresh TGY broth was placed on a spot. 

The samples were pipetted up and down approximately 20 times. The media remained on 

the plate lid while the next spot was rehydrated in the same manner. Once all eight strains 

were rehydrated they were again pipetted up and down approximately 20 times to ensure 

as many cells as possible were fully re-suspended. The ~60µl sample was placed in the top 

well of a 96-well plate and then each strain was run through a full dilution series. Then 5µl 

from each well in the column was placed on a 1xTGY agar plate and the spots were allowed 

to dry. The plates were then partially sealed in a plastic bag and incubated at 32°C for 48 

hours. 

Colony Counting Post Oxygen Irradiation 

 Following the incubation period, individual colonies were visually counted. The 

untreated controls were all counted at the 10-5 dilution. Most of the treated colonies were 

counted at the 10-4 and 10-5 dilutions. The colony counts were recorded and are reported in 

Appendices I-S.   

Statistical Methods of Comparison 

In accordance with previous D. radiodurans resistance research conducted at the 

Air Force Institute of Technology (AFIT) [4], a one-tailed Student’s t-statistical analysis 

was performed to establish any statistical difference between the various populations. The 

method allows one to draw a conclusion with a given confidence the likelihood that two 

samples, μ1 and μ2, are the same. As noted by Lenker, this method is useful when working 
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with small sample sizes (< 30 samples) and is predicated on “the following assumptions: 1 

– the two samples are randomly selected in an independent manner from the two target 

populations, 2 – both samples’ populations distributions that are approximately normal, 

and 3 – the population variances are equal.” [4]  

This statistical method requires one to establish a null hypothesis, H0, and an 

alternate hypothesis, Ha. In this experiment the null hypothesis generally proposed that the 

two samples were not statistically different where the alternate hypothesis proposed that 

they were statistically different. A test statistic, t, was calculated by the following equation: 

𝑡 =  
(𝑥1̅̅̅ −  𝑥2̅̅ ̅)

√𝑠𝑝
2(

1
𝑛1

+ 
1

𝑛2
)
 

where 𝑥̅ is the mean colony count for each sample population, n is the number of samples 

in the population, and 𝑠𝑝
2 is the pooled sample estimator which was calculated via the 

following equation: 

𝑠𝑝
2 =  

(𝑛1 − 1)𝑠1
2 + (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2
 

where s is the sample variance of each population. The degree of freedom is reflected in 

the denominator. For this experiment, α was set at 0.05 so all deductions are with 95% 

confidence. The rejection region of the hypothesis is if t >ta in which case one can conclude 

that the two populations are statistically different. 
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IV. Analysis and Results 

Chapter Overview 

The purpose of the chapter is to review the growth of the rehydrated wild type and 

mutant strains following UV and oxygen ion exposure compared with the CFU input and 

the untreated controls. It will also highlight the results that appear atypical, unexpected, or 

illogical. In these cases the causes that produced them will be diagnosed. It will cover the 

statistical comparisons as well as an evaluation of the biochemistry that resulted in those 

differences. The chapter will also cover some cases that did not show a statistical 

difference, although the majority of these instances will be ignored. 

UV Experiment 

For the UV experiment, the CFU input control was compared against the desiccated 

but untreated control group. Then the treated samples were compared to the untreated 

controls for each strain. Table 10 depicts the CFU counts pre- and post-UV exposure. 
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Table 10. UV Exposure Colony Rollup – Raw Data 
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Figure 14. Colony Averages Pre- and Post-UV Exposure 

 

 

Figure 15. Colony Averages Pre- and Post-UV Exposure with Standard Deviation 
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 The populations for every strain except #1 (wild type) and #5 (MnSOD KO) 

showed a statistical difference merely from the desiccation. Every strain tested in this 

experiment showed significant reductions in populations compared with the untreated 

controls, as shown above in Figure 15. The percentage of the population killed in the UV 

experiment ranged from #5 (MnSOD) at 58% to #27 (ΔuvrB) at 85%. It should be noted 

that the percentage kill is calculated against the untreated population rather than the CFU 

input. Figure 16 shows an untreated sample population for each mutant while Figure 16 

shows a treated sample population for each mutant.  

 

 

Figure 16. Untreated sample populations for UV experiment. The strains, moving left to right, are 

wild type #1, Mutant #5, Mutant #8, Mutant #11, Mutant #16, Mutant #6A, and Mutant #27 
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Figure 17. Treated sample population for the UV experiment. The strains, moving left to right, are 

wild type #1, Mutant #5, Mutant #8, Mutant #11, Mutant #16, Mutant #6A, and Mutant #27 

 

Oxygen Experiment 

For the oxygen ion experiment, the CFU input controls were first compared against 

the untreated, unvacuumed control group. In all cases, it was shown that there was no 

statistical difference between the CFU input and the controls. Next, the untreated and 

unvacuumed controls were compared against the untreated and vacuumed controls. In all 

cases, these were not shown to be within the rejection region. In order to increase the 

sample size and the statistical power, the unvacuumed and vacuumed controls were 

grouped and will hereafter just be referred to as untreated controls. Figure 18 shows the 

average colony counts for each mutant following exposure to oxygen ions. Table 11 shows 

the full colony counts of every sample included in the oxygen experiment. 
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Figure 18. Colony Averages Pre- and Post-Oxygen Exposure 

 

 

Figure 19. Colony Averages Pre- and Post-Oxygen Exposure with Standard Deviation 
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Table 11. Oxygen Exposure Colony Rollup – Raw Data 
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The treated samples were then compared to the untreated wild type control 

population. The populations for Mutants #1.5 (ΔrecF), #8 (Cu/ZnSOD Double KO) and 

#16 (ΔuvrB) showed a statistical difference at all exposure levels. Mutants #11 (ΔbshA) 

and #27 (ΔuvrB) showed a statistical difference at 500Gy and 10,000Gy, but actually 

showed an increase in total colonies at 1000Gy when compared to the untreated wild type 

control. This anomaly has been assessed to be a procedural error resulting in poor mixing 

during the serial dilutions. Figures 19, 20 and 21 show the comparison plots for each mutant 

at 500Gy, 1000Gy and 10,000Gy, respectively. Table 12 shows the kill percentages for the 

three mutants that displayed a statistically significant difference at all exposure levels. 

 

 

Figure 20. Colony Comparison of Mutants to Untreated Wild Type at 500Gy Oxygen Exposure 
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Figure 21. Colony Comparison of Mutants to Untreated Wild Type at 500Gy Oxygen Exposure with 

Standard Deviation 

 

Figure 22. Colony Comparison of Mutants to Untreated Wild Type at 1000Gy Oxygen Exposure 
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Figure 23. Colony Comparison of Mutants to Untreated Wild type at 1000Gy with Standard 

Deviation 

 

Figure 24. Colony Comparison of Mutants to Untreated Wild Type at 10,000Gy Oxygen Exposure 
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Figure 25. Colony omparison of mutants to untreated wild type at 10,000Gy with standard deviation 

 

Table 12. Statistically significant mutants compared to the untreated wild type 

controls 

 

 

The next step in the analysis was to compare each treated sample to its own 

untreated control group. This comparison yielded very few populations that fell within the 

rejection region. The only mutant to show a statistical difference at all exposure levels was 
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Mutant #1.5 (ΔrecF). The only other population that fell within the rejection was Mutant 

#16 (ΔuvrB) at 10,000Gy exposure although it did not do so with very strong correlation.  

 

 

Figure 26. Colony comparison of mutants to their own untreated control 
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Figure 27. Colony comparison of mutants to their own untreated control with standard deviation 

 

 The final step in the analysis was to compare each mutant to the wild type at each 

exposure level. This comparison yielded the most results with Mutants #1.5 (ΔrecF) and 

#6A (ΔrecF) showing a statistically significant difference to the exposed wild type at all 

three exposure levels. Mutant #8 (Cu/ZnSOD Double KO) showed a difference at 1000Gy 

and 10,000Gy while Mutants #5 (MnSOD KO) and #27 (ΔuvrB) only showed a difference 

at 1000Gy. 
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Figure 28. Colony comparison against wild type for 500Gy oxygen exposure 

  

 

Figure 29. Colony comparison against wild type for 500Gy oxygen exposure with standard deviation 
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Figure 30. Colony comparison against wild type for 1000Gy exposure 

 

 

Figure 31. Colony comparison against wild type for 1000Gy oxygen exposure with standard deviation 
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Figure 32. Colony comparison against wild type for 10,000Gy exposure 

 

 

Figure 33. Colony comparison against wild type for 10,000Gy oxygen exposure with standard 

deviation 
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UV Experiment Findings 

While the UV experiment was intended mostly to develop and become familiar 

with the procedures for desiccation, rehydration, serial dilutions, and spotting in 

preparation for the HCP experiment at SNL, some interesting trends resulted. For UV 

radiation at 9999J cm-2 it has been demonstrated that all but wild type #1 and Mutant #8 

(Cu/ZnSOD Double KO) showed a statistically significant reduction in population 

densities merely from the desiccation and vacuum process. Of even more importance, 

every treated mutant as well as the wild type in this experiment fell very firmly within the 

rejection region when compared to their own untreated populations.  

Nearly all DNA damage from UV radiation would be in the form of SSB. If enough 

SSB breaks accumulate, one could also expect induced DSBs to form. With this in mind it 

would be expected that Mutants #16 and #27 may show evidence of increased kill rates, or 

at least growth latency since the uvrB gene is instrumental is SSB repair. This was proven 

since the mutants experienced 74% and 85% kills, respectively. However, the evidence 

indicates that every strain experienced at least 50% kills with some approaching 80%. 

Mutants #1.5 and #6A (ΔrecF) showed growth latency throughout the experiments 

indicating that recF plays a fundamental role in DNA replication during cell division.  

Oxygen Experiment Findings 

 The HCP experiment also yielded some very important, and in some ways 

expected, results that support all three hypotheses. For oxygen ions accelerated to 7.8MeV, 

it has been demonstrated that both Mutants #1.5 and #6A (ΔrecF) display statistical 

differences when compared to the untreated and treated wild type controls for all exposure 
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levels. However, only Mutant #1.5 shows any statistical difference when compared to its 

own untreated control.  

 Mutants #5 (MnSOD KO) and #27 (ΔuvrB) were in the rejection region at the 

1000Gy exposure level, but were not at the 10,000Gy exposure. At first glance, this seems 

to suggest that there was a greater response at the lower exposure levels. However, this is 

misleading since, in all cases, the populations decreased at 10,000Gy. The statistical 

comparison is really comparing the rate at which the populations decrease, so Mutants #1.5 

(ΔrecF) and #27 (ΔuvrB) decreased at a greater rate at 1000Gy but were at about the same 

rate for 10,000Gy. This does not suggest that the bacteria experienced recovery at the 

higher exposure level.  

 It should be noted that for every mutant, the desiccated controls all showed 

population increases from the CFU input. This defies logic if one assumes that all 

procedures were performed in the exact same manner. Since this was the case for all 

mutants it can only be deduced that there was some procedural error that contributed to the 

discrepancy. For this reason, the CFU inputs were ignored and the treated populations were 

only compared to the untreated populations. 

V.  Conclusions and Recommendations 

Conclusions of Research 

 UV Experiment 

 The results of the UV experiment are generally consistent with past research 

suggesting that a dose of 10,000Gy of gamma radiation will result in about 10-2 lethality. 

[19] While all mutants displayed at least 50% kill rates, both of the uvrB mutants showed 
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85% lethality. This is well below two-log lethality, but that should be expected considering 

the total absorbed dose is only about 400Gy of low-LET radiation. 

The primary damage from UV radiation results in the formation of thymine and 

pyrimidine dimers and SSB. The uvrB repair gene is necessary in the recruitment of both 

uvrA and uvrC. These genes help accomplish the excision of the identified lesion. Since 

the uvrB mutant was unable to utilize this pathway for repairing the damage, and it is the 

preferred pathway for SSB, the results of the experiment appear to be within the bounds of 

expectation.   

The samples were only desiccated for a day prior to UV treatment, so they were 

relatively “wet” compared to the samples that went to SNL. It is probable that they were 

not yet in a stationary or “dormant” phase at the time of irradiation making them more 

susceptible to radiation-induced damage. It is also probable that there were more oxide 

radicals present in this experiment. Finally, repair mechanisms are up-regulated following 

a prolonged period of dehydration. In the case of the UV-treated cells, they likely never 

achieved a dry enough state to initiate this acceleration of repair pathways. In light of these 

factors, the UV results are not particularly surprising. 

 

Oxygen Experiment 

The first hypothesis for this experiment stated that D. radiodurans exposed to high-

LET HCP will exhibit a statistical difference from the untreated wild type control group. 

Mutants #1.5 (ΔrecF), #8 (Cu/ZnSOD Double KO) and #16 (ΔuvrB) showed a statistical 

difference at all exposure levels. Mutants #11 (ΔbshA) and #27 (ΔuvrB) showed a statistical 

difference at 500Gy and 10,000Gy. These mutants all confirmed the hypothesis. Although 
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Mutant 6A (ΔrecF) was created in the exact same manner as Mutant #1.5 it unexpectedly 

did not confirm the first hypothesis.  

The second hypothesis for this experiment stated that mutants exposed to high-LET 

HCP will exhibit a statistical difference from their own untreated control group. Mutant 

#1.5 (ΔrecF) showed a difference at all exposure levels. The only other population to fall 

within the rejection region was Mutant #16 (ΔuvrB) at 10,000Gy exposure, although it did 

so with a weak correlation. These results seem to indicate that the threshold of damage to 

achieve lethality was not met, although it may merely be a function of the maximum depth 

of exposure and the probability of getting statistically significant kills. 

The third hypothesis for this experiment stated that exposed DNA repair mutants 

will exhibit a statistically significant difference when compared to the exposed wild type. 

Mutants #1.5 (ΔrecF) and #6A (ΔrecF) showing a statistically significant difference to the 

corresponding exposed wild type at all three exposure levels which was more in line with 

the expected results. Mutant #8 (Cu/ZnSOD Double KO) showed a difference at 1000Gy 

and 10,000Gy suggesting that the exposure threshold lies somewhere between 500 and 

1000Gy. Mutants #5 (MnSOD KO) and #27 (ΔuvrB) only showed a difference at 1000Gy.  

The validity of a previous experiment was questioned because the energy was so 

high, most of it was deposited beyond the cell layers. This experiment was designed to 

place the Bragg peak in the middle of the full cell depth to ensure that all the energy was 

deposited within the media. 7.8MeV oxygen ions were calculated to penetrate about 10 μm 

of the estimated 21.7 μm depth. This suggests that even if one could kill every cell within 

the exposure depth, it would only equate to half of the total cells (discounting those that 

die due to desiccation.) This makes the analysis for the first two hypotheses difficult. 
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However, hypothesis three negates the need to take this into account because the 

comparison is to the treated wild type at the corresponding exposure. Any mutants that are 

accepted under the third hypothesis have most certainly experienced enhanced lethality due 

solely to the exposure.  

Previous research indicated that D. radiodurans could experience 10,000Gy of 

gamma irradiation with two-log kills, which is astounding. However, this research showed 

that wild type D. radiodurans can sustain 10,000Gy of HCP exposure with less than two-

log lethality. Relative biological effectiveness (RBE) is a weighting factor that expresses 

the ratio of the effectiveness of one type of radiation to another. In mammalian cells, HCP 

often have an RBE of 5-10 meaning that a dose is 5-10 times more damaging than an 

equivalent dose of gamma irradiation. The implication from this experiment is that for D. 

radiodurans, HCP have an RBE of 1. This is unlike any other cell that has ever been 

identified in the literature.  

While this research did not achieve full gene knockout for the recF mutants, these 

experiments have clearly demonstrated that the gene plays a critical role in DSB repair. In 

contrast with previous studies that established D. radiodurans could withstand in excess of 

10,000Gy of ionizing radiation, the recF mutants experienced over 80% lethality at a mere 

500Gy of high-LET HCP bombardment. Surprisingly, the double copper/zinc SOD mutant 

experienced considerably greater kill rates from the oxygen exposure than either of the 

uvrB mutants even though it was designed to disrupt superoxide radical damage induced 

via low-LET radiation.     

Throughout the duration of this study, the recF mutants displayed noticeable 

growth latency, even prior to irradiation. The gene is not only involved in DSB repair, but 
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it also plays a role in replication. There is clear evidence that D. radiodurans cannot survive 

without the gene since the knockout was not complete, so it follows that even a meroploid 

will struggle throughout its life cycle.  

The general proposal that D. radiodurans’ ability to efficiently and correctly repair 

its DNA following damage is the primary resistance mechanism to radiation-induced cell 

death is supported through this research. In particular, DSB repair appears to be what sets 

this organism apart from all others. It has shown that it is capable of sustaining tens to 

hundreds of DSB and reconstruct correct copies of its genome in order to continue its 

lifecycle. When one of the DSB repair pathways is compromised, it exhibits growth 

inhibition as well as poor resistance. Had the researchers been able to achieve a pure 

knockout, it is probable that the bacterium would have displayed a response to high-LET 

HCP bombardment that was on par with most other known organisms.  

Recommendations for Future Research 

 There are a number of interesting results that beg further research. It is clear that 

the recF repair pathway is critical for DSB repair as was experienced through HCP 

bombardment. Bentchikou et al. identified uvrD as involved in the RecFOR pathway for 

DNA repair. [14] In this research, uvrB and recF were chosen specifically to isolate SSB 

and DSB repair mechanisms. However, uvrD plays a role in both repair mechanisms and 

may prove to be a vital link in the process. If the uvrD gene could be deleted, it would be 

beneficial to repeat the HCP bombardment in the same manner as this research. 

 While this project yielded interesting results, the error in the colony counts is such 

that it is unlikely to produce useable kill curves. The error almost certainly derived from a 
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procedural error in the rehydration and serial dilution, so there is no requirement to alter 

the irradiation parameters in order to achieve accurate curves. Also, more untreated control 

replicates would aid in the statistical comparisons. 

 Finally, there is some debate whether the method for calculating the required energy 

for the bombarding particles and the subsequent required fluence is accurate. It is possible 

that the particles penetrated much farther than expected, in which case the energy 

deposition would be much less in the target layers. There is also some doubt if the density 

of the cells changes significantly following desiccation. If the density decreases by even a 

third, the SRIM/TRIM model changes considerably. What this means in practical terms is 

that the chosen energy was too high and the majority of the energy was deposited beyond 

the cell layers. An accurate measurement of the density the dried spots would quickly 

answer this question. 
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Appendix A: WT UV Exposure Comparison 
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Appendix B: Mutant 1.5 UV Exposure Comparison 
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Appendix C: Mutant 5 UV Exposure Comparison 
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Appendix D: Mutant 8 UV Exposure Comparison 
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Appendix E: Mutant 11 UV Exposure Comparison 
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Appendix F: Mutant 16 UV Exposure Comparison 
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Appendix G: Mutant 6A UV Exposure Comparison 
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Appendix H: Mutant 27 UV Exposure Comparison 
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Appendix I: 500 Gy Oxygen Exposure Comparison 
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Appendix J: 1000 Gy Oxygen Exposure Comparison 
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Appendix K: 10,000 Gy Oxygen Exposure Comparison 
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Appendix L: Wild Type Oxygen Exposure Comparison 
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Appendix M: Mutant 1.5 Oxygen Exposure Comparison 
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Appendix N: Mutant 5 Oxygen Exposure Comparison 
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Appendix O: Mutant 8 Oxygen Exposure Comparison 

 

 
 

 



www.manaraa.com

84 

Appendix P: Mutant 11 Oxygen Exposure Comparison 
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Appendix Q: Mutant 16 Oxygen Exposure Comparison 
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Appendix R: Mutant 6A Oxygen Exposure Comparison 
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Appendix S: Mutant 27 Oxygen Exposure Comparison 
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